skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hanselman, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. If a knot K in S^3 admits a pair of truly cosmetic surgeries, we show that the surgery slopes are either ±2 or ±1/q for some value of q that is explicitly determined by the knot Floer homology of K. Moreover, in the former case the genus of K must be 2, and in the latter case there is a bound relating q to the genus and the Heegaard Floer thickness of K. As a consequence, we show that the cosmetic crossing conjecture holds for alternating knots (or more generally, Heegaard Floer thin knots) with genus not equal to 2. We also show that the conjecture holds for any knot K for which each prime summand of K has at most 16 crossings; our techniques rule out cosmetic surgeries in this setting except for slopes ±1 and ±2 on a small number of knots, and these remaining examples can be checked by comparing hyperbolic invariants. These results make use of the surgery formula for Heegaard Floer homology, which has already proved to be a powerful tool for obstructing cosmetic surgeries; we get stronger obstructions than previously known by considering the full graded theory. We make use of a new graphical interpretation of knot Floer homology and the surgery formula in terms of immersed curves, which makes the grading information we need easier to access. 
    more » « less
  2. null (Ed.)
    If $$Y$$ is a closed orientable graph manifold, we show that $$Y$$ admits a coorientable taut foliation if and only if $$Y$$ is not an L-space. Combined with previous work of Boyer and Clay, this implies that $$Y$$ is an L-space if and only if $$\unicode[STIX]{x1D70B}_{1}(Y)$$ is not left-orderable. 
    more » « less
  3. Gay, David; Wu, Weiwei (Ed.)
    We give new obstructions to the module structures arising in Heegaard Floer homology. As a corollary, we characterize the possible modules arising as the Heegaard Floer homology of an integer homology sphere with one-dimensional reduced Floer homology. Up to absolute grading shifts, there are only two. We use this corollary to show that the chain complex depicted by Ozsváth, Stipsicz, and Szabó to argue that there is no algebraic obstruction to the existence of knots with trivial epsilon invariant and non-trivial upsilon invariant cannot be realized as the knot Floer complex of a knot. 
    more » « less